High Performance PWM Controller for Fly-back

1 Descriptions

SC3030 is a high performance, multi-mode fly-back PWM controller (CCM/QR/DCM).

SC3030 provides an adaptive switching frequency fold-back to achieve higher efficiency in the whole loading range. At heavy load or full load, it operates up to 67kHz frequency. When loading decreases, it operates in green mode with valley switching for high efficiency. And at no load, the IC will operate in Burst mode to reduce power consumption.

It provides functions of low start-up current, fast start-up, low standby power consumption. The burst mode with extremely low operation current (185uA) and significantly reduces standby power consumption to meet the efficiency regulations.

The SC3030 offers comprehensive protection to prevent the circuit from damage under abnormal conditions.

Furthermore, the features of frequency jittering and smart driving function can minimize the noise and improve EMI performance.

2 Features

- Internal Soft Start
- 67kHz Maximum Switching Frequency
 - CCM @ Heavy Load and Low Line
 - Valley switching operation @ Green mode
 - Burst Mode @ Light Load & No Load
- Ultra-low operation current @Burst mode/Fault Mode
- Frequency Jitter for EMI improvement
- Driver capability: 300mA/-600mA
- Comprehensive Protection
 - > VDD over voltage protection
 - VDD under voltage lock out
 - Cycle by cycle current limiting
 - Two level over current protection
 - Output over voltage protection
 - Adaptive output short protection
 - Over Load protection
 - > Brown in/out with auto-recovery
- SOT23-6 package available

3 Applications

AC-DC adapters for Portable Devices

4 Device Information

ORDER NUMBER	PACKAGE	BODY SIZE
SC3030SBER	SOT23-6	2.9mm x 2.8mm x 1.1mm

SC3030SBER Functional Table

ORDER NUMBER	SC3030
Maximum Frequency	67kHz
V _{ZCDOVP}	3.55V
OLP	A
Bulk Cap OVP	1
Brown In/Out	A
Valley Switching	Y
Others Protections	A

A: Auto-recovery;

Y: The feature is enabled

/ : The feature is not enabled

5 Typical Application Circuit

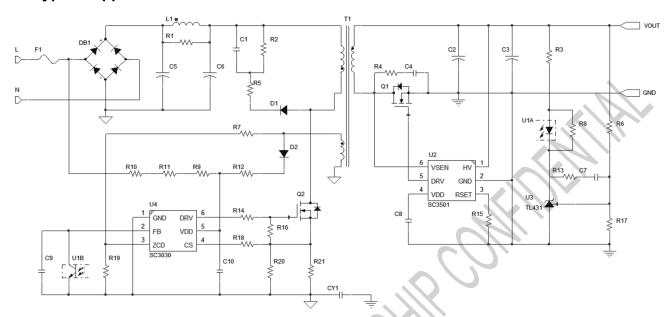


Fig. 1 Typical application circuit

6 Terminal Configuration and Functions

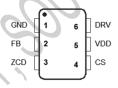


Fig. 2 Top view (SOT23-6)

TERM	IINAL		
NUMBER	NAME	I/O	DESCRIPTION
1	GND	PWR	Power Ground.
2	FB	ı I	Secondary side feedback through opto-coupler. A capacitor is needed to connect to GND.
3	ZCD	I	Voltage Sense. The ZCD voltage is used to detect resonant valleys for quasi-resonant switching. This pin detects the output voltage information and diode current discharge time based on the auxiliary winding voltage.
4	cs	I	Current Sense. This pin connects to a current-sense resistor to sense the MOSFET current for Peak-Current-Mode control.
5	VDD	PWR	Power Supply. This pin is typically connected to an external VDD capacitor.
6	DRV	0	Totem-pole output to drive the external power MOSFET, Maximum Voltage is clamped to 12V internally.

Specifications

7.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted) (1)

Item	Description	Min.	Тур.	Max.	Unit
	VDD to GND	-0.3	-	+40	V
Voltage range at terminals (2)	DRV to GND	-0.3	-	+20	V
	Other Pins to GND	-0.3	- <	+6.5	V
T _J	Operating Junction temperature range	-40	-	150	°C
T _{stg}	Storage temperature range	-65		150	°C

Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress (1) ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device

Thermal Information 7.2

THERMAL RESISTA	NCE (1)	SOT23-6(2.9mmx2.9mm)	UNIT
θ_{JA}	Junction to ambient thermal resistance	220	°C/W
θ _{JC}	Junction to case resistance	110	°C/W

⁽¹⁾ Measured on JESD51-7, 2-layer PCB.

7.3 Handling Ratings

PARAMETER	DEFINITION	MIN	MAX	UNIT
ESD (1)	Human body model (HBM) ESD stress voltage (2)	-2	+2	kV
ESD	Charged device model (CDM) ESD stress voltage (3)	-1	+1	kV

Electrostatic discharge (ESD) to measure device sensitivity and immunity to damage caused by assembly line electrostatic discharges (1)

All voltage values are with respect to network ground terminal.

Level listed above is the passing level per ANSI, ESDA, and JEDEC JS-001. JEDEC document JEP155 states that 500-V HBM allows (2) safe manufacturing with a standard ESD control process.

Level listed above is the passing level per EIA-JEDEC JESD22-C101. JEDEC document JEP157 states that 250-V CDM allows safe (3) manufacturing with a standard ESD control process.

SC3030 DATASHEET DRAFT

SOUTHCHIP SEMICONDUCTOR SOUTHCHIP CONFIDENTIAL SUBJECT TO CHANGE

7.4 Recommended Operating Conditions

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VDD to GND	VDD voltage range to GND	10		V_{DDOVP}	V
DRV to GND	DRV voltage range to GND	0		15	V
Others to GND	Other pins voltage range to GND	0		5.5	V
C _{VDD}	VDD Capacitor	2.2		22	uF
T _A	Operating ambient temperature	-40		85	°C
TJ	Operating junction temperature	-40		125	°C

7.5 Electrical Characteristics

VDD=15V, T_J = -40°C~125°C, unless otherwise noted.

PARAMETER	२	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SUPPLY VO	LTAGE (VDD)					
V_{DDON}	VDD on threshold voltage		15.4	16.2	17.0	V
V_{DDOFF}	VDD off threshold voltage		7.0	7.5	8.0	V
$V_{DDHOLDL}$	VDD holding entry point voltage			7.9		V
$V_{DDHOLDH}$	VDD holding exit point voltage			8.5		V
I _{ST}	Startup current	VDD < V _{DDON} -1V		2.5	8.0	uA
I_{VDD}	Operating current	Cload = 1nF		2		mA
I _{VDDBT}	Burst mode current	V _{FB} < 0.5V		185	220	uA
I _{VDDFAULT}	Hold up current in fault mode			80		uA
T _{DFAULT}	Hold on time in fault mode			1		S
I _{VDDFAULT1}	VDD sink current	After T _{DFAULT} 1S		1.2	2.0	mA
V_{DDOVP}	VDD OVP		34.5	36.2	38.0	V
I_{VDDOVP}	VDD OVP sink current	V _{DD} > 37.5V		3		mA
T_{VDDOVP}	VDD OVP debounce time			160		us
ZERO VOLTA	AGE DETECTION (ZCD)					
V _{ZCDOVP}	ZCD OVP		3.37	3.55	3.73	V
N _{ZCDOVP}	ZCD OVP debounce counter			4		Cycles
I _{ZCDMAX}	Maximum ZCD Clamp source current		1			mA
V _{ZCDCLAMP}	ZCD Clamp voltage	I _{ZCDCLAMP} =1.0mA		-120		mV
T _{LEB1OVP}	Leading edge blanking time1	FB = 0.65V		1.6		us
T _{LEB2OVP}	Leading edge blanking time2	FB = 2.20V		2.3		us
V_{ZCDH}	ZCD valley detection rising edge	V _{DRV} = low	0.40	0.45	0.50	V
I _{ZCDBI}	Line voltage brown in clamp current threshold in ZCD		135	155	175	uA
I _{ZCDBO}	Line voltage brown out clamp current threshold in ZCD		115	140	165	uA
T _{DZCDBO}	ZCD brown out debounce time			60		mS
I _{LINECOMPST}	Line voltage compensation threshold ZCD clamp current			210		uA
K _{LINECOMP}	The ratio of line voltage compensation		0.17	0.20	0.22	
FEEDBACK	VOLTAGE (FB)					
V _{FBOPEN}	Open Loop Voltage	I _{FB} = 0	2.80	3.0	3.2	V
R_{FB}	FB pull-up resistor			8		kΩ
V_{FBOLP}	OLP		2.30	2.50	2.7	V
T_{FBOLP}	Debounce time of FB open loop protection	V _{FB} > 2.4V		64		mS
	†		1			

SC3030 DATASHEET DRAFT

SOUTHCHIP SEMICONDUCTOR SOUTHCHIP CONFIDENTIAL SUBJECT TO CHANGE

CURRENT SENSE (CS) TSSCS Soft start time of CS threshold 5 mS VCSLIMIT Cycle by cycle current limited 0.47 0.495 0.52 V TLEBERGE Leading edge blanking time 350 ns VCS_SSCP Secondary rectifier short protection 0.9 1.0 1.1 V NCS_SSCP Secondary rectifier short circuit protection debounce counter 3 Cycles 1.1 V T_LEBSSCP Leading edge blanking time 200 ns Ns Ns 1.1 NV Ns Vcycles ns n	V _{FBBSTHYS}	V _{FBBSTH} hysteresis voltage			0.1		V
VCSLIMIT Cycle by cycle current limited 0.47 0.495 0.52 V TLEBCRIC Leading edge blanking time 350 ns VCS_SSCP Secondary rectifier short protection 0.9 1.0 1.1 V NCS_SSCP Secondary rectifier short circuit protection debounce counter 3 Cycles TLEBSSCP Leading edge blanking time 200 ns VCSANIR Slope compensation 8.5 10.0 11.5 mV/us VSANIR CS minimum voltage 0.1 V ΔVC _{SS} CS jitter ±5 % T _{JIT} CS jitter cycle 480 cycles GATE DRIVER (DRV) V _{OL} Driver output low voltage VDD=15V 0.5 V V _{OL} Driver output high voltage VDD=15V 8.0 V V _{OL} Driver output high voltage VDD=15V 8.0 V V _{OL} Driver output high voltage VDD=15V 8.0 V V _{OL} Driver output high volta	CURRENT S	ENSE (CS)					
Timecance Leading edge blanking time 350 ns Vcs. sscor Secondary rectifier short protection 0.9 1.0 1.1 V Ncs. sscor Secondary rectifier short discuit protection debounce counter 3 Cycles TLEBSSCP Leading edge blanking time 200 ns Vcss.core Slope compensation 8.5 10,0 11.5 mV/us Vcsmin CS minimum voltage 0.1 V V d √ <t< td=""><td>T_{SSCS}</td><td>Soft start time of CS threshold</td><td></td><td></td><td>5</td><td></td><td>mS</td></t<>	T _{SSCS}	Soft start time of CS threshold			5		mS
VCS_SSCP Secondary rectifier short protection 0.9 1.0 1.1 V NCS_SSCP Secondary rectifier short circuit protection debounce counter 3 Cycles T_EBSSCP Leading edge blanking time 200 ns VCSSLOPE Slope compensation 8.5 10,0 11.5 mV/us VCSMIN CS minimum voltage 0.1 V ΔV _{CS} CS jitter ±5 % TJTT CS jitter cycle 480 cycles GATE DRIVER (DRV) Vo Driver output low voltage VDD=15V 0.5 V Vo Driver output high voltage VDD=15V 8.0 V Vo Driver output high voltage VDD=15V 8.0 V Vo Driver output high voltage VDD=15V 8.0 V Vo Driver output high voltage VDD=V000PF 6.0 V Ibrevsource DRV maximum source current Vpcv < 1V	V _{CSLIMIT}	Cycle by cycle current limited		0.47	0.495	0.52	V
Secondary rectifier short circuit protection debounce counter 3 Cycles T_LEBSSCP Leading edge blanking time 200 ns V_CSSLORE Slope compensation 8.5 10.0 11.5 mV/us V_CSMIN CS minimum voltage 0.1 V ΔV _{CS} CS jitter ±5 % T _{JIT} CS jitter cycle 480 cycles GATE DRIVER (DRV) V _{OL} Driver output low voltage VDD=15V 0.5 V V _{OH} Driver output high voltage VDD=15V 8.0 V V _{OH2} Driver output high voltage2 VDD>V _{DDOFF} 6.0 V V _{OH2} Driver output high voltage2 VDD>V _{DDOFF} 6.0 V I _{DRVSOURCE} DRV maximum source current V _{DRV} < 1V	T _{LEBCBC}	Leading edge blanking time			350	1	ns
Nos.sscr	Vcs_sscp	Secondary rectifier short protection		0.9	1.0	1.1	V
VCSSILOPE Slope compensation 8.5 10.0 11.5 mV/us VCSMIN CS minimum voltage 0.1 V ΔV _{CS} CS jitter ±5 % T _{JIT} CS jitter cycle 480 cycles GATE DRIVER (DRV) V _{OL} Driver output low voltage VDD=15V 0.5 V V _{OH} Driver output high voltage VDD>15V 8.0 V V _{OH2} Driver output high voltage2 VDD>V _{BDOFF} 6.0 V I _{DRIVSIOURCE} DRV maximum source current V _{DRV} ≤ 1V 300 mA I _{DRIVSIOURCE} DRV maximum sink current V _{DRV} ≤ 1V 300 mA V _{CLAMP} Output clamp voltage 11 V T _R Output rising time 1.2V ~ 10.8V CL=1nF 200 ns T _F Output falling time 10.8V ~ 1.2V CL=1nF 50 ns Oscillator for Switching Frequency F _{SWMAX} Switching frequency V _{FB} = V _{FBOLP} 67 kHz <td>Ncs_sscp</td> <td></td> <td></td> <td></td> <td>3</td> <td></td> <td>Cycles</td>	Ncs_sscp				3		Cycles
VCSMIN CS minimum voltage 0.1 V ΔV_{CS} CS jitter ±5 % TJIT CS jitter cycle 480 cycles GATE DRIVER (DRV) Vol. Driver output low voltage VDD=15V 0.5 V V Do. Driver output high voltage VDD=15V 8.0 V V Port output high voltage VDD>V000F 6.0 V Increase of the port output high voltage VDD>V000F 6.0 V Increase of the port output high voltage VDD>V000F 6.0 V Increase of the port output high voltage VDD>V000F 6.0 V Increase of the port output high voltage VDD>V000F 6.0 V Increase of the port output high voltage VDD>V000F 6.0 V Increase of the port output high voltage VDD>V000F 6.0 V Increase of the port output high voltage VDRV < 1V	T _{LEBSSCP}	Leading edge blanking time			200		ns
ΔV _{CS} CS jitter ±5 % T _{JIT} CS jitter cycle 480 cycles GATE DRIVER (DRV) V _{OL} Driver output low voltage VDD=15V 0.5 V V _{OH} Driver output high voltage VDD=15V 8.0 V V _{OH} Driver output high voltage VDD>V _{DDOFF} 6.0 V I _{DRVSDURCE} DRV maximum source current V _{DRV} ≤ 1V 300 mA I _{DRVSDINK} DRV maximum sink current V _{DRV} ≤ 9V 600 mA V _{CLAMP} Output clamp voltage 11 V T _R Output falling time 1.2V ~ 10.8V CL=1nF 200 ns T _F Output falling time 10.8V ~ 1.2V CL=1nF 50 ns Oscillator for Switching Frequency F _{SWMAX} Switching frequency V _{FB} = V _{FBOLP} 67 kHz F _{SWMIN} Minimum frequency 21 kHz T _{OFFMAX} Maximum duty cycle 78 % Internal Over-Temperature 150 <td>V_{CSSLOPE}</td> <td>Slope compensation</td> <td></td> <td>8.5</td> <td>10.0</td> <td>11.5</td> <td>mV/us</td>	V _{CSSLOPE}	Slope compensation		8.5	10.0	11.5	mV/us
T _{JIT} CS jitter cycle 480 cycles	Vcsmin	CS minimum voltage			0.1		V
GATE DRIVER (DRV) VoL Driver output low voltage VDD=15V 0.5 V VOH Driver output high voltage VDD=15V 8.0 V VOH2 Driver output high voltage2 VDD>VDD>VDDOFF 6.0 V IDRVSOURCE DRV maximum source current VDRV < 1V	ΔV_{CS}	CS jitter		2	±5		%
VOL Driver output low voltage VDD=15V 0.5 V VOH Driver output high voltage VDD=15V 8.0 V VOH2 Driver output high voltage2 VDD>VDD>VDDOFF 6.0 V IDRVSOURCE DRV maximum source current VDRV < 1V	Тлг	CS jitter cycle)	480		cycles
V_{OH} Driver output high voltage VDD=15V 8.0 V V_{OH2} Driver output high voltage2 VDD> V_{DDOFF} 6.0 V $I_{DRVSOURCE}$ DRV maximum source current $V_{DRV} < 1V$ 300 mA $I_{DRVSINK}$ DRV maximum sink current $V_{DRV} > 9V$ 600 mA V_{CLAMP} Output clamp voltage 11 V T_R Output rising time $1.2V \sim 10.8V$ $CL=1nF$ 200 ns T_F Output falling time $10.8V \sim 1.2V$ $CL=1nF$ 50 ns Oscillator for Switching Frequency F_{SWMAX} Switching frequency $V_{FB} = V_{FBOLP}$ 67 kHz F_{SWMIN} Minimum frequency 21 kHz T_{OFFMAX} Maximum off time After SS, without ZCD 145 us D_{MAX} Maximum duty cycle 78 % Internal Over-Temperature Protection (OTP) 0TP Temperature 150 $^{\circ}C$	GATE DRIVE	ER (DRV)	CMI				
V _{OH2} Driver output high voltage2 VDD>V _{DDOFF} 6.0 V I _{DRVSOURCE} DRV maximum source current V _{DRV} < 1V	V _{OL}	Driver output low voltage	VDD=15V		().5	V
$\begin{array}{ c c c c c }\hline I_{DRVSOURCE} & DRV \ maximum \ source \ current & V_{DRV} < 1V & 300 & mA \\ \hline I_{DRVSINK} & DRV \ maximum \ sink \ current & V_{DRV} > 9V & 600 & mA \\ \hline V_{CLAMP} & Output \ clamp \ voltage & 11 & V \\ \hline T_R & Output \ rising \ time \ 1.2V \sim 10.8V & CL=1nF & 200 & ns \\ \hline T_F & Output \ falling \ time \ 10.8V \sim 1.2V & CL=1nF & 50 & ns \\ \hline \textbf{Oscillator for Switching Frequency} & V_{FB} = V_{FBOLP} & 67 & kHz \\ \hline F_{SWMAX} & Switching \ frequency & V_{FB} = V_{FBOLP} & 67 & kHz \\ \hline T_{OFFMAX} & Maximum \ frequency & 21 & kHz \\ \hline T_{OFFMAX} & Maximum \ off \ time & After \ SS, \ without \ ZCD & 145 & us \\ \hline D_{MAX} & Maximum \ duty \ cycle & 78 & \% \\ \hline \textbf{Internal Over-Temperature} & 150 & \circ_C \\ \hline \end{array}$	V_{OH}	Driver output high voltage	VDD=15V	8.0			V
IDRVSINK DRV maximum sink current VDRV > 9V 600 mA VCLAMP Output clamp voltage 11 V TR Output rising time 1.2V ~ 10.8V CL=1nF 200 ns TF Output falling time 10.8V ~ 1.2V CL=1nF 50 ns Oscillator for Switching Frequency FSWMAX Switching frequency VFB = VFBOLP 67 kHz FSWMIN Minimum frequency 21 kHz TOFFMAX Maximum off time After SS, without ZCD 145 us DMAX Maximum duty cycle 78 % Internal Over-Temperature Protection (OTP) OTP OTP Temperature 150 °C	V_{OH2}	Driver output high voltage2	VDD>V _{DDOFF}	6.0			V
VCLAMP Output clamp voltage 11 V T _R Output rising time 1.2V ~ 10.8V CL=1nF 200 ns T _F Output falling time 10.8V ~ 1.2V CL=1nF 50 ns Oscillator for Switching Frequency F _{SWMAX} Switching frequency V _{FB} = V _{FBOLP} 67 kHz F _{SWMIN} Minimum frequency 21 kHz T _{OFFMAX} Maximum off time After SS, without ZCD 145 us D _{MAX} Maximum duty cycle 78 % Internal Over-Temperature Protection (OTP) OTP _H OTP Temperature 150 °C	I _{DRVSOURCE}	DRV maximum source current	V _{DRV} < 1V		300		mA
T _R Output rising time 1.2V ~ 10.8V CL=1nF 200 ns T _F Output falling time 10.8V ~ 1.2V CL=1nF 50 ns Oscillator for Switching Frequency F _{SWMAX} Switching frequency V _{FB} = V _{FBOLP} 67 kHz F _{SWMIN} Minimum frequency 21 kHz T _{OFFMAX} Maximum off time After SS, without ZCD 145 us D _{MAX} Maximum duty cycle 78 % Internal Over-Temperature Protection (OTP) OTP _H OTP Temperature	I _{DRVSINK}	DRV maximum sink current	V _{DRV} > 9V		600		mA
T _F Output falling time 10.8V ~ 1.2V CL=1nF 50 ns Oscillator for Switching Frequency V _{FB} = V _{FBOLP} 67 kHz F _{SWMAX} Switching frequency V _{FB} = V _{FBOLP} 67 kHz F _{SWMIN} Minimum frequency 21 kHz T _{OFFMAX} Maximum off time After SS, without ZCD 145 us D _{MAX} Maximum duty cycle 78 % Internal Over-Temperature Protection (OTP) OTP _H OTP Temperature 150 °C	V_{CLAMP}	Output clamp voltage	C		11		V
Oscillator for Switching Frequency F _{SWMAX} Switching frequency V _{FB} = V _{FBOLP} 67 kHz F _{SWMIN} Minimum frequency 21 kHz T _{OFFMAX} Maximum off time After SS, without ZCD 145 us D _{MAX} Maximum duty cycle 78 % Internal Over-Temperature Protection (OTP) OTP _H OTP Temperature 150 ℃	T _R	Output rising time 1.2V ~ 10.8V	CL=1nF		200		ns
F_{SWMAX} Switching frequency $V_{FB} = V_{FBOLP}$ 67 kHz F_{SWMIN} Minimum frequency 21 kHz T_{OFFMAX} Maximum off time After SS, without ZCD 145 us D_{MAX} Maximum duty cycle 78 % Internal Over-Temperature Protection (OTP) OTP _H OTP Temperature 150 ${}^{\circ}C$	T _F	Output falling time 10.8V ~ 1.2V	CL=1nF		50		ns
F _{SWMIN} Minimum frequency 21 kHz T _{OFFMAX} Maximum off time After SS, without ZCD 145 us D _{MAX} Maximum duty cycle 78 % Internal Over-Temperature Protection (OTP) OTP _H OTP Temperature 150 ℃	Oscillator fo	r Switching Frequency					
TOFFMAX Maximum off time After SS, without ZCD 145 us D _{MAX} Maximum duty cycle 78 % Internal Over-Temperature Protection (OTP) OTP _H OTP Temperature 150 ℃	F _{SWMAX}	Switching frequency	$V_{FB} = V_{FBOLP}$		67		kHz
D _{MAX} Maximum duty cycle 78 % Internal Over-Temperature Protection (OTP) OTP _H OTP Temperature 150 ℃	F _{SWMIN}	Minimum frequency			21		kHz
Internal Over-Temperature Protection (OTP) OTP → OTP Temperature 150 °C	T _{OFFMAX}	Maximum off time	After SS, without ZCD		145		us
OTP _H OTP Temperature 150 ℃	D _{MAX}	Maximum duty cycle			78		%
	Internal Ove	r-Temperature Protection (OTP)					
OTP _{HYS} OTP Hysteresis 30 °C	ОТРн	OTP Temperature			150		°C
	OTP _{HYS}	OTP Hysteresis			30		°C

8 Functional Block Diagram



Fig. 3 Function Block Diagram

SOUTHCHIP CONFIDENTIAL SUBJECT TO CHANGE

9 Feature Description

SC3030 is a high performance, multi-mode fly-back PWM controller (CCM/QR/DCM). SC3030 provides an adaptive switching frequency fold-back to achieve higher efficiency in the whole loading range. At heavy load or full load, it operates up to 67kHz frequency. When loading decreases, it operates in green mode with valley switching for high efficiency. And at no load, the IC will operate in Burst mode to reduce power consumption.

9.1 Start-up

During the startup period, the controller draws a little current I_{VDD} less than 2uA. This allows a high-impedance start-up resistor, which offers a convenient and efficient way to reduce the standby power.

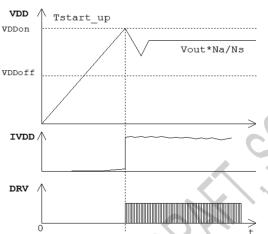


Fig. 4 VDD start-up waveform

The start-up time can be estimated by the following equation:

$$T_{START-UP} \approx \frac{C_{VDD*}V_{DDON}}{V_{RIIIK}} * R_{START_{UP}}$$

Where, C_{VDD} is VDD cap, V_{BULK} is the bulk cap voltage, $R_{START-UP}$ is the resistor connected between bulk cap positive terminal and VDD cap.

An integrated 5ms soft start is used in the chip to reduce the voltage and current stress. During the soft start-up period, the Vcs threshold gradually rises from 0.1V to 0.5V. Once the secondary side regulation loop is stable, the Vcs is controlled by the feedback loop.

9.2 VDD UVLO

A hysteresis Under Voltage Lock Out (UVLO) comparator is implemented in SC3030. The turn-on and turn-off thresholds are fixed at 16.5V and 7.5V respectively. This hysteresis ensures that the VDD capacitor can be small enough during start-up. A large hysteresis is essential to ensure the IC work properly during the start-up period, even for a small VDD capacitor.

9.3 VDD Holding Mode

After the system starts, the VDD capacitor can be charged by the auxiliary winding. There are some operation condition changes (load changes, output voltage adjustment, burst mode), may lead the primary side DRV stop working when the output value is higher than the set value. Furthermore, the VDD voltage will be lower than VDDOFF and the system will stop. To avoid this situation, a VDD holding circuitry is designed, which starts working when VDD drops below VDDHOLDL and stops working when VDD rises above VDDHOLDH. The working process is shown in below:

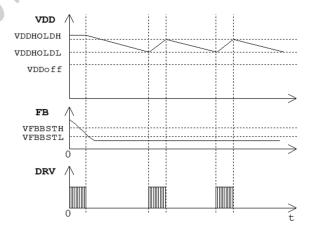


Fig. 5 VDD holding circuitry

9.4 Brown IN/OUT Detection

The ZCD pin is used to monitor the voltage on the Bulk capacitor and perform brown In/Out. Working principle: When the primary switch is turned on, the voltage V_{AUX} on the auxiliary winding is negative. The value of V_{AUX} is proportional to the line voltage. The clamp circuit built in the ZCD pin clamps the voltage of the ZCD to $V_{ZCDCLAMP}$ through a current source.

SOUTHCHIP CONFIDENTIAL SUBJECT TO CHANGE

The detailed equations are shown as below:

$$\frac{V_{AUX}}{R_{ZCD-IJP}} = I_{ZCDCLAP}$$
 and $V_{AUX} = \frac{V_{BULK}}{N_P} * N_{AUX}$

The V_{AUX} is negatively associated with I_{ZCD} . V_{AUX} is a negative value. When I_{ZCD} is greater than I_{ZCDBI} , the Brown in process is executed and the system starts to work. When the value of I_{ZCD} is less than I_{ZCDBO} and lasts for a certain period of time, the line voltage is considered to be too low and brown out protection is triggered.

Fig. 6. Brown In/Out detection

9.5 Operation Mode

SC3030 provides an adaptive switching frequency fold-back to achieve higher efficiency in the whole loading range. At heavy load or full load, it operates up to 67kHz switching frequency. When loading decreases, it operates in green mode with valley switching for high efficiency. And at no load, the IC will operate in Burst mode to reduce power consumption.

When the system is under no load or extremely light load, the IC will operate in BURST mode to reduce power dissipation. In this condition, switching loss of MOSFET is the main power dissipation. The DRV will be disabled immediately if V_{FB} drops below V_{FBBSTL}. When V_{FB} rises up to V_{FBBSTH}, the DRV starts to pulse again.

When under medium load condition, the system operates in green mode (DCM or QR). The switching frequency will linearly increase from 21kHz to 67kHz. That means, when load increases, the switching frequency is increased. When

output load continues increasing, the IC will enter CCM and switching at a constant frequency of 67kHz for high efficiency.

9.6 Valley Switching

ZCD pin can detect the freewheel information on the secondary side. In QR mode, when the voltage of ZCD turns to a negative value, it means that after a quarter of the resonant period, the primary MOS can be turned on, and valley opening helps to improve efficiency and improve EMI performance. In order to achieve the best valley opening, it can be achieved by appropriately adjusting T_{DZCD} and T_{DDRV} , where T_{DPG} is an internal fixed delay. T_{DZCD} can be adjusted by connecting a small capacitor in parallel with $R_{ZCDDWON}$. The recommended value is 10 \sim 11pF. T_{DDDRV} can be adjusted by connecting DRV resistors in series.

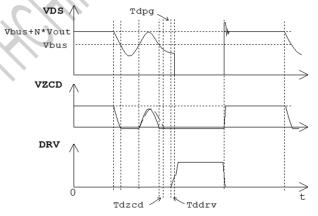


Fig. 7 Valley Switching

9.7 Internal Slope Compensation

A slope compensation circuitry is built-in to simplify the system design. When the switcher is on, a ramp voltage is added to the sensed voltage across the CS pin, which helps to stabilize the system and prevent sub-harmonic oscillations.

9.8 Auto-Recovery after Failure

SC3030 has complete protection functions, such as: VDD over voltage protection, VDD under voltage lock out, two level over current protection, output over voltage protection, Output short protection, over Load protection, brown IN/Out with auto-recovery. Unless otherwise specified,

these protections are auto-recovery. After the protection is triggered, the system enters the protection mode, and the VDD power consumption is reduced. After the T_{DFAULT} delay, the VDD sink current increases until V_{DDOFF} , and VDD starts the restart process. The detailed process is as follows.

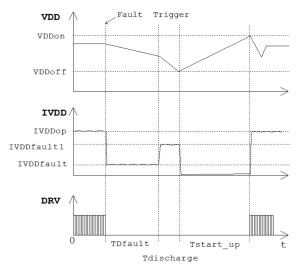
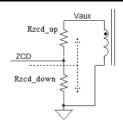


Fig. 8 Auto-Recovery Process

9.9 VDD OVP

When the VDD voltage is higher than the V_{DDOVP} threshold voltage at least T_{VDDOVP} , in the case of a sink current of I_{VDDOVP} , DRV will be shut down. The VDD OVP function is an auto-recovery protection.


9.10 ZCD OVP

The auxiliary winding demagnetization voltage V_{AUX} is proportional to the output voltage. V_{ZCD} sensing the V_{AUX} via the divided resistors can be used to sample the output voltage after some blanking time. The output over voltage can be calculated as:

$$\frac{V_{AUX} * R_{ZCD-DOWN}}{R_{ZCD-DOWN} + R_{ZCD-UP}} > V_{ZCDOVP}$$

$$\frac{V_{AUX}}{N_A} = \frac{V_{OUT}}{N_S}$$

The blanking time can ignore the voltage ringing from leakage inductance of transformer. With the increase of VFB, the blanking time is from 1.4uS to 2.15uS.

SOUTHCHIP CONFIDENTIAL SUBJECT TO CHANGE

Fig. 9 ZCD Over Voltage Protection

9.11 Over Current Protection

Two levels of overcurrent protection are integrated. One is cycle-by-cycle current limiting for overload protection. Vcsscp is the fast protection for the case of secondary rectifier rectification shorted. The overcurrent protection and its shielding time are shown in the figure below.

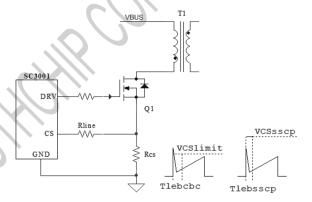
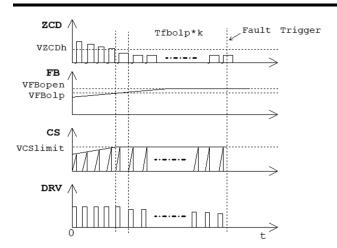


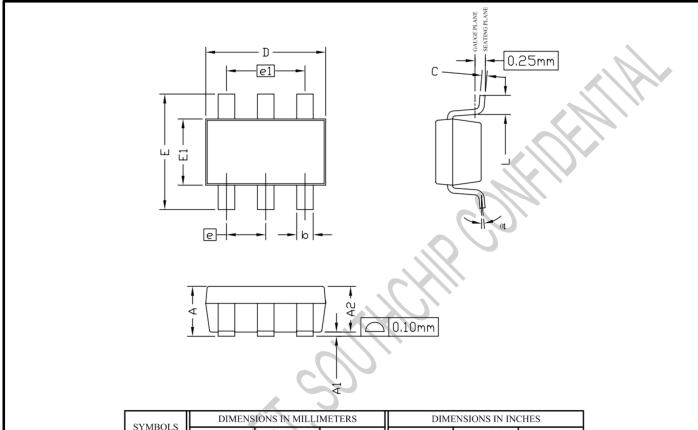
Fig. 10 LEB of OCP

9.12 Adaptive Over Load Protection (AOLP)

An adaptive over load protection is implemented in the SC3030. When the voltage of VFB is higher than V_{FBOLP} and lasts for a period of time T_{FBOLP} , overload protection will be triggered. In particular, when the voltage of VFB is higher than V_{FBOLP} , if the peak voltage of ZCD pin is lower than V_{ZCDH} , the delay of T_{FBOLP} will be shortened. In the Fig.10, when V_{ZCD} is lower than V_{ZCDH} , the coefficient K is less than 1. The AOLP can reduce the power loss when secondary side is shorted.

SOUTHCHIP CONFIDENTIAL SUBJECT TO CHANGE

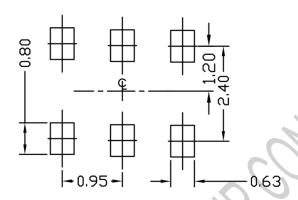



Fig. 11 Adaptive Over Load Protection

9.13 On-Chip OTP

An internal OTP circuit is embedded inside to provide the worst-case protection for SC3030. When the chip temperature rises higher than the OTP_H, the controller will be disabled and works in the failure mode until the chip is cooled down below the hysteresis OTP_{HYS}.

MECHANICAL DATA


SOT23-6 (2.9mmx2.8mmx1.1mm)

SYMBOLS	DIMENS	IONS IN MILLI	METERS	DIMENSIONS IN INCHES			
S I MBOLS	MIN	NOM	MAX	MIN	NOM	MAX	
A	0.90		1.25	0.035		0.049	
A1	0.00		0.15	0.00		0.006	
A2	0.70	1.10	1.20	0.028	0.043	0.047	
b	0.30	0.40	0.50	0.012	0.016	0.020	
C	0.08	0.13	0.20	0.003	0.005	0.008	
D	2.70	2.90	3.10	0.106	0.114	0.122	
E	2.50	2.80	3.10	0.098	0.110	0.122	
E1	1.50	1.60	1.70	0.059	0.063	0.067	
e	0.95 BSC.			0.037BSC.			
el		1.90 BSC.		0.075 BSC.			
L	0.30		0.60	0.012		0.024	
θ1	00		80	00		80	

RECOMMENDED FOOTPRINT

Example Board Layout

UNIT: mm

NOTES:

- Publication IPC-7351 is recommended for alternate designs
- Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in the thermal pad