

CHIPLINK N-Channel Enhancement Mode Power MOSFET

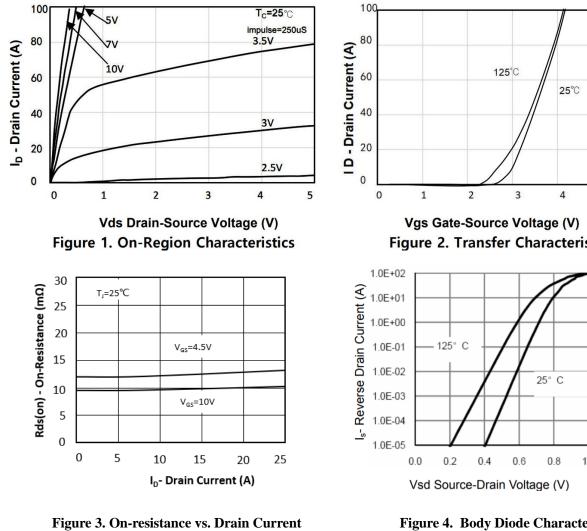
Maximum Ratings(T_A=25°C unless otherwise noted)

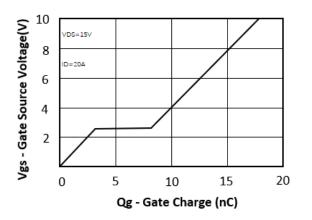
Parameter	Symbol	Maximum	Units
Drain-Source Voltage	V _{DS}	30	V
Gate-Source Voltage	V _{GS}	±20	V
Continuous Drain Current	I _D (T _C =25℃)	30	A
	I _D (T _C =100℃)	20	
Pulsed Drain Current ^B	I _{DM}	120	A
Maximum Power Dissipation ^A	PD	9	W
Single pulse avalanche energy	E _{AS}	36	mJ
Junction and Storage Temperature Range	T _J , T _{STG}	-55 To 150	°C

Thermal Characteristic

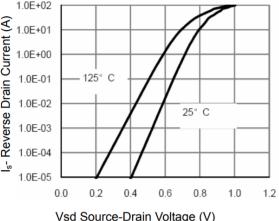
I nermal Resistance, Junction to Case R _{QJA} 6.5 C/W	Thermal Resistance, Junction to Case	R _{QJA}	6.5	°C/W
--	--------------------------------------	------------------	-----	------

Electrical Characteristics (T_A=25°C unless otherwise specified)


Parameter	Symbol	Test conditions	MIN	TYP	MAX	UNIT
Drain-Source Breakdown Voltage	BV _{DSS}	V_{GS} =0V, I _D =250uA	30			V
Gate-Threshold Voltage	V _{th(GS)}	$V_{DS}=V_{GS}$, $I_{D}=250$ uA		1.5	2.2	V
Gate-body Leakage	IGSS	$V_{DS}=0V, V_{GS}=\pm 12V$			±100	nA
Zero Gate Voltage Drain Current	IDSS	V _{DS} =30V, V _{GS} =0V			1	uA
Drain-Source On-Resistance	D	V _{GS} =10V, I _D =5A		9	13	mΩ
Dialit-Source Off-Resistance	R _{DS(ON)}	V _{GS} =4.5V, I _D =4A		12.5	17	mΩ
Forward Transconductance	g fs	V_{DS} =5V, I_{D} =5A	10			S
Dynamic Characteristics						
Input Capacitance	Ciss			865		pF
Output Capacitance	Coss	V _{DS} = 15V, V _{GS} =0V, F=1MHz		105		
Reverse Transfer Capacitance	C _{rss}			86		
Switching Capacitance						
Turn-on Delay Time	t _{d(on)}			5		nS
Turn-on Rise Time	tr	V_{DD} = 15V, R _L =3 Ω		4		nS
Turn-off Delay Time	t _{d(off)}	$V_{GS} = 10V, R_{GEN} = 3\Omega$		22		nS
Turn-off Fall Time	t _f			6		nS
Total Gate Charge	Qg	V _{DS} = 15V, I _D =5A,		18		nC
Gate-Source Charge	Q _{gs}	V _{GS} =4.5V		3		nC
Gate-Drain Charge	Q _{gd}			5		nC
Drain-Source Diode Characteristics						
Diode Forward Voltage	V _{SD}	V _{GS} =0V, I _D =5A			1.2	V
Diode Forward Current	ls				30	А


Notes:

- A. The Power dissipation P_D is based on $T_{J(MAX)}{=}150~{}^\circ\!{\rm C}$, using<10s junction-to ambient thermal resistance.
- B. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}=150$ °C.Ratings are based on low frequency and duty cycles to keep initial $T_{J}=25$ °C.
- C. The Static characteristics in Figures are obtained using $<300 \ \mu$ s pulses, duty cycle 2% max.
- D. EAS condition: TJ=25 $^\circ C$,V_DD=15V, V_GS=10V, R_G=25\Omega, L=0.5Mh, I_{AS}=19A_\circ


Typical Electrical and Thermal Characteristics

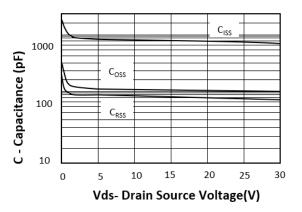


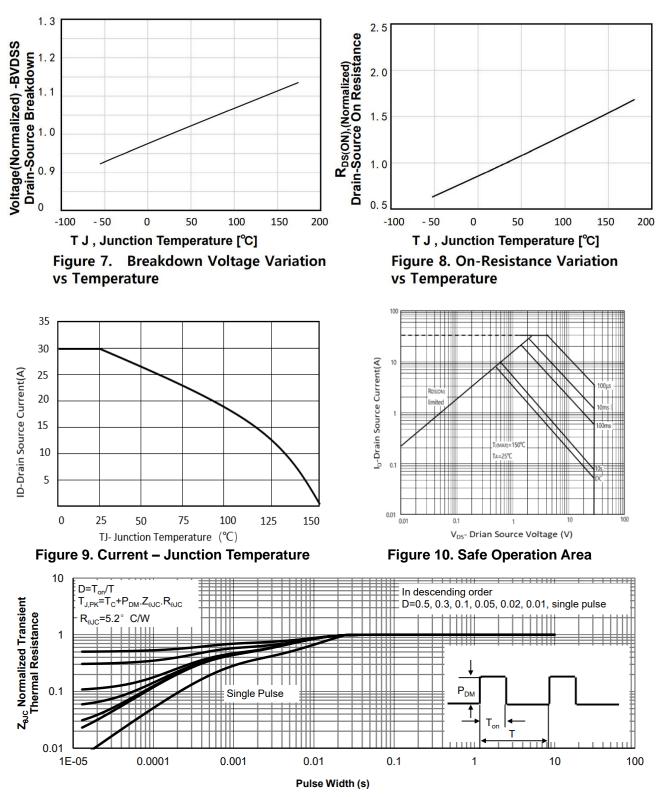
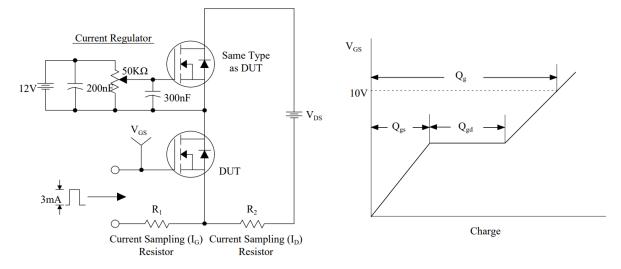
Figure 5. Gate Charge Characteristics

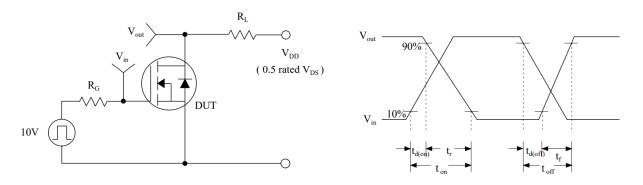
5 6 **Figure 2. Transfer Characteristics**

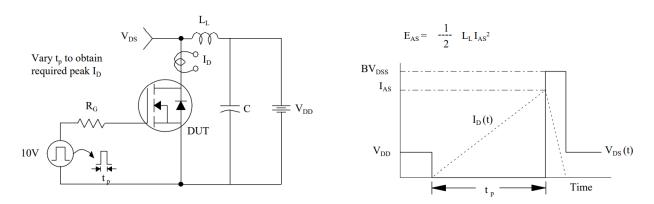
Figure 4. Body Diode Characteristics

Figure 6. Capacitance Characteristics

LX3030N

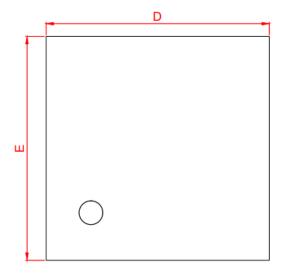




Figure 11. Normalized Maximum Transient Thermal Impedance

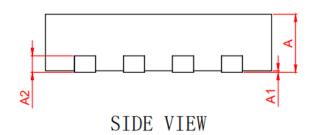


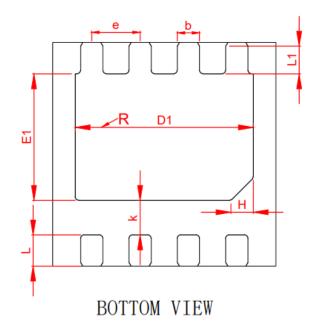
Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms



Unclamped Inductive Switching Test Circuit & Waveforms





DFN3*3 Package Information

	MILLIMETER		
SYMBOL	MIN	NOM	MAX
Α	0.70	0.75	0.80
* A1	0.00	0.02	0.05
*b	0.27	0.32	0.37
* A2	0.20REF		
* D	2.90	3.00	3.10
* E	2.90	3.00	3.10
*E1	1.70	1.80	1.90
*D1	2.35	2.45	2.55
* e	0.65BSC		
*L	0.35	0.40	0.45
h	0.30 REF		
* k	0.50REF		
*L1	0.25	0.30	0.35

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITIAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED.

CHIPLINK DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS.

THIS DOCUMENT SUPERSEDES AND REPLACES ALL INFORMATION PREVIOUSLY SUPPLIED.

CHIPLINK RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.